KAPASITAS GESER BALOK TINGGI DENGAN CAMPURAN FLY ASH TANPA TULANGAN GESER

  • Merzy Mooy Program Studi Teknik Sipil, Fakultas Teknik, Universitas Katolik Widya Mandira - Kupang
Keywords: Kapasitas Geser, Balok Tinggi, Supplementary Beam, Balok Tanpa Tulangan Geser

Abstract

Balok tinggi merupakan balok dengan komponen struktur discontinue region (D-region) yang tidak dapat dihitung menggunakan teori balok konvensional. Salah satu perilaku balok tinggi yaitu memiliki perbedaan signifikan dengan balok konvensional, sehingga memerlukan pertimbangan khusus dalam analisis, desain, dan perincian tulangan karena dikendalikan oleh geser. Keruntuhan geser dapat terjadi pada balok dengan perbandingan lengan geser a dan tinggi efektif d sebesar 1 sampai 2,5 untuk beban terpusat. D-region akan berada jauh pada tumpuan dan beban pada rasio a/d lebih dari 2,5 serta akan terjadi jika berada pada daerah beban dekat dengan tumpuan pada rasio a/d kurang dari 2,5. Kekuatan geser balok tinggi bahkan mencapai dua hingga tiga kali balok konvensional. Oleh sebab itu, dalam penelitian ini dilakukan pengujian geser three point bending pada balok tinggi konvensional dan supplementary beam menggunakan fly ash tanpa tulangan geser. Hasil penelitian menunjukkan bahwa kapasitas geser supplementary beam lebih tinggi dibandingkan balok konvensional.

Deep beam is one of the structure component that has discontinue region (D-region) where conventional beam analyse could not be applied. Deep beam behavior is significantly difference with conventional beam, so that it has to be analysed with reinforcement details due to controlled by shear. Shear failure occur when shear span a and depth d ratio 1 to 2,5 for concentrate load. D-region beyond load and support occur when a/d ratio is more than 2,5 whereas nearby load and support when a/d ratio is less than 2,5. Shear capacity of deep beam is two to three more than conventional beam. Hence, this research used three point bending test of unreinforced conventional deep beam and supplementary deep beam using fly ash. The result shows that shear capacity of supplementary deep beam is higher than conventional deep beam.

References

ACI Committee 211. 1-91. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.

American Concrete Institute (revised 1986) Building Code Requirements for Reinforced Concrete. ACI 318–83, American Concrete Institute, Detroit.

Appiah, K. A., & Asamoah, M. A. (2016). Characterization and Shear Strength Prediction of Reinforced Concrete Deep Beams-A Review. IJSR 5(3):1789-1798.

ASTM C 127-88 (1993). Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregates.

ASTM C 128-93. Spesification Gravity and Absorption of Fine Aggregate.

ASTM C 136-93. Test Method for Sieve Analysis of Fine and Coarse Aggregate.

ASTM C 142-78. Standard Test Method for Clay Lumps and Friable Particles in Aggregates.

ASTM C 188-89, 2003. Standard Test Method for Density of Hydraulic Cement. United States: Association of Standard Testing Materials.

ASTM C 29-91a. Standard Test Method for Bulk Density and Voids Aggregates.

ASTM C 618-94a. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.

ASTM C 70-79. Standard Test Method for Surface Moisture in Fine Aggregates.

Canadian Standards Association. (1984). Design of Concrete Structures for Buildings. CAN3A23.3-M84, Canadian Standards Association, Toronto, Canada.

Comité Européen de Béton-Fédération Internationale de la Précontrainte. (1978). Model Code for Concrete Structures. English Edition, Cement and Concrete Association, London.

Construction Industry Research and Information Association. (1977). The Design of Deep Beams in Reinforced Concrete. CIRIA Guide 2. Ove Arup & Partners and CIRIA, London.

Don, W. (2020). Influence of Link Spacing on Concrete Shear Capacity: Experimental Investigations and Finite Element Studies. IOP Conf. Series: Materials Science and Engineering 930. https://doi.org/10.1088/1757-899X/930/1/012052

DPU, 1971. Peraturan Beton Bertulang Indonesia, N.1-2 1971, Direktorat Penyelidikan Masalah Bangunan, Departemen Pekerjaan Umum, Bandung.

Kong, F. K. (2002). Reinforced concrete deep beams. New York: Taylor & Francis e-Library.

Kotsovos, M.D. (1988). Design of reinforced concrete deep beams. Struct. Engr. 66, 2: 28.

Lantsoght, E. (2014). Determinationof Distribution Width for Shear Stresses at Support in Reinforced Concrete Slab Bridges. https://doi.org/ 10.1201/b16645-104

Mooy, M. (2020). Evaluation of Shear-Critical Reinforced Concrete Beam Blended with Fly Ash. IOP Conf. Series: Earth and Environmental Science 506. https://doi.org/10.1088/1755-1315/506/1/012041

Mooy, M. (2020). Studi Eksperimental Pengaruh Pre-Crack Pada Kapasitas Geser Balok Engineered Centitious Composite Yang Terkorosi, MT Thesis, Surabaya: Institut Teknologi Sepuluh Nopember Surabaya.

Nawy, E. G. (1990). Reinforced concrete: a fundamental approach, 6/E. New Jersey: Prentice Hall International Series in Civil Engineering and Engineering Mechanics.

Nawy, E. G. (2009). Reinforced concrete. New Jersey: Prentice Hall International Series in Civil Engineering and Engineering Mechanics.

Oktaviani, W. N. (2020). Flexural Behaviour of a Reinforced Concrete Beam Blended with Fly Ash as Supplementary Material. IOP Conf. Series: Earth and Environmental Science 506. https://doi.org/10.1088/1755-1315/506/1/012042

Patil, S. S., & Baghban, O. R. (2018). Comparison of experimental strength of RC deep beams design by various country codes with respect to deep beam with different percentage of web steel. (May), 122-126.

Tambusay, A. (2018). Visualization of Shear Cracks in a Reinforced Concrete Beam Using The Digital Image Correlation. International Journal on Advanced Science Engineering Information Technology., Vol. 8. ISSN: 2088-5334

Tambusay, A. (2021). Application of Nonlinear Finite Element Analysis on Shear-Critical Reinforced Concrete Beams. J. Eng. Technol. Sci., Vol. 53, No. 4, 2021. https://doi.org/10.5614/j.eng.technol.sci.2021.53.4.8

Published
2022-11-03
How to Cite
Mooy, M. (2022). KAPASITAS GESER BALOK TINGGI DENGAN CAMPURAN FLY ASH TANPA TULANGAN GESER. Jurnal Teknik Sipil, 11(2), 133-142. Retrieved from https://sipil.ejournal.web.id/index.php/jts/article/view/528

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.