PENGEMBANGAN HIDROGRAF LIMPASAN UNTUK WILAYAH PERKOTAAN DI KOTA BEKASI - JAWA BARAT

  • Segel Ginting Balai Teknik Irigasi, Direktorat Jenderal Sumber Daya Air
Keywords: Hidrologi Perkotaan, Hidrograf Limpasan Perkotaan, Hietograf, Waktu Konsenterasi

Abstract

Sistem drainase perkotaan untuk mengelola air limpasan membutuhkan perencanaan agar dapat berkinerja maksimal dan berkelanjutan. Perencanaan sistem drainase tidak hanya bagaimana menentukan kapasitas saluran agar mampu mengalirkan debit puncak limpasan, tetapi bagaimana menentukan kapasitas volume tampungan (pond). Pond digunakan untuk mengurangi debit puncak dan dimensi saluran. Desain volume tampungan memerlukan informasi hidrograf limpasan permukaan, sementara metode yang biasa digunakan untuk desain drainase adalah metode rasional. Metode rasional hanya menghasilkan debit puncak. Agar dapat menghasilkan debit puncak dan hidrograf limpasan permukaan, maka dikembangkan metode perhitungan hidrograf satuan untuk wilayah perkotaan dengan ordinat lebih pendek (5 menit atau 1 menit) dan waktu konsenterasi yang lebih singkat (kurang dari 3 jam). Pendekatan yang digunakan untuk perhitungan hidrograf limpasan permukaan adalah dengan mengintegrasikan metode hidrograf satuan time-area dan metode SCS untuk perhitungan kehilangan air serta pola hietograf hujan di Kota Bekasi. Pendekatan yang dikembangkan ini telah diujicoba menggunakan data lapangan untuk kejadian hujan pada tanggal 20 Januari 2021 dan 21 Januari 2021 dengan parameter utama nilai CN sekitar 88.98 untuk λ = 0.05. Hasil ujicoba menunjukan bahwa kinerja metode yang dikembangkan menunjukkan hasil yang baik, dimana hasil perhitungan limpasan dengan data pengamatan cukup sesuai. Metode yang dikembangkan ini dapat digunakan pada cathment area kecil dengan waktu kosenterasi kurang dari 1 jam.

Urban drainage systems to manage runoff is require planning in order to perform optimally and sustainably. Drainage system design is not only how to determine the capacity of the channel to be able to drain the peak runoff discharge, but how to determine the capacity of the reservoir volume (pond). Ponds are used to reduce peak discharge and channel dimensions. The pond storage design is requires surface runoff hydrograph information, while the method commonly used for drainage design is the rational method. The rational method only produces peak discharge. In order to produce peak discharge and runoff hydrographs, a unit hydrograph calculation method for urban areas with shorter ordinates (5 minutes or 1 minute) and time of concentration less than 3 hours has been developed. The approaches are using  time-area hydrograph method to calculate runoff hydrograph and SCS method for calculating water losses as well as the rain hietograph pattern in Bekasi City. This developed approach has been tested using field data for rainfall extreem events on January 20, 2021 and January 21, 2021 with the main parameter CN value around 88.98 for λ = 0.05. The test results show that the performance of the developed method shows good results, where the results of runoff calculations with observational data are quite appropriate. The developed method can be used in small area catchments with a concentration time of less than 1 hour.

References

Ajward, M. H. (1996). A spatially distributed unit hydrograph model using a geographic information system. https://doi.org/http://dx.doi.org/10.11575/PRISM/22375

Alemaw, B. F., & Tafesse, N. T. (2021). Urban Stormwater and Sewerage Modelling: An Approach for Peak Runoff and Volume Assessment. Journal of Water Resource and Protection, 13(11), 855–880. https://doi.org/10.4236/jwarp.2021.1311046

Bedient, P. B., Huber, W. C., & Vieux, B. E. (2008). Hydrology and floodplain analysis (Vol. 816). Prentice Hall Upper Saddle River, NJ.

Beven, K. J. (2020). A history of the concept of time of concentration. Hydrology and Earth System Sciences, 24(5), 2655–2670. https://doi.org/10.5194/hess-24-2655-2020

Chen, C., Hui, Q., Pei, Q., Zhou, Y., Wang, B., Lv, N., & Li, J. (2019). CRML: A Convolution Regression Model with Machine Learning for Hydrology Forecasting. IEEE Access, 7, 133839–133849. https://doi.org/10.1109/ACCESS.2019.2941234

Chen, Y., & Dong, L. (2018). Urban Runoff Change Detection for Smart City Water Management: A Case Study of Liede Creek in Southern China. World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change - Selected Papers from the World Environmental and Water Resources Congress 2018, 196–206. https://doi.org/10.1061/9780784481417.018

Chin, D. A. (2019). Estimating Peak Runoff Rates Using the Rational Method. Journal of Irrigation and Drainage Engineering, 145(6), 04019006. https://doi.org/10.1061/(asce)ir.1943-4774.0001387

Diogo, A. F., & do Carmo, J. A. (2019). Peak flows and stormwater networks design-current and future management of urban surface watersheds. Water (Switzerland), 11(4). https://doi.org/10.3390/w11040759

Dooge, J. C. I. (1959). A general theory of the unit hydrograph. Journal of Geophysical Research, 6(2), 241–256. https://doi.org/10.1029/jz064i002p00241

Espey, W. H., & Altman, D. G. (1978). Nomograph for 10-minute unit hydrographs for small watersheds. Addendum 3 of Urban Runoff Control Planning, Rep. EPA-600/9-78, 35.

Fariborzi, H., Sabzevari, T., Noroozpour, S., & Mohammadpour, R. (2019). Prediction of the subsurface flow of hillslopes using a subsurface time-area model. Hydrogeology Journal, 27(4), 1401–1417. https://doi.org/10.1007/s10040-018-1909-9

Ginting, S. (2021). Pengembangan Hietograf Hujan Rencana di Kota Bekasi. Jurnal Ilmiah Desain & Konstruksi, 19(2), 102–113. https://doi.org/https://doi.org/10.35760/dk.2020.v19i2.3441 113

Guo, J. C. Y. (2001). Rational Hydrograph Method for Small Urban Watersheds. Journal of Hydrologic Engineering, 6(1), 352–356.

Hall, M. J. (1984). Urban hydrology. Elsevier Applied Science Publishing. London, 37474, 299.

Jainet, P. (2018). Evaluation of the conceptual basis of the rational method. International Journal of Hydrology, 2(6), 2–7. https://doi.org/10.15406/ijh.2018.02.00145

Lim, K. J., Engel, B. A., Muthukrishnan, S., & Harbor, J. (2006). Effects of initial abstraction and urbanization on estimated runoff using CN technology. Journal of the American Water Resources Association, 42(3), 629–643. https://doi.org/10.1111/j.1752-1688.2006.tb04481.x

Linsley Jr, R. K., Kohler, M. A., & Paulhus, J. L. H. (1975). Hydrology for engineers.

McCuen, R. H. (1989). Hydrologic Analysis and Design. Englewood Cliffs, N.J.

Muzik, I. (1996). Flood modelling with GIS‐derived distributed unit hydrographs. Hydrological Processes, 10(10), 1401–1409.

Pazwash, H. (2016). Urban storm water management. In Urban Storm Water Management, Second Edition (Second Edi). CRC press, Taylor & Francis Group.

Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L., & Atanasova, N. (2021). Automated modelling of urban runoff based on domain knowledge and equation discovery. Journal of Hydrology, 603(October). https://doi.org/10.1016/j.jhydrol.2021.127077

Rajkumar, S., Mohanarajah, S., & Junaid, H. M. (2019). Effect of Time-Area Percent Curves in Development of Clark Model Unit Hydrograph. Engineer: Journal of the Institution of Engineers, Sri Lanka, 52(1), 29. https://doi.org/10.4038/engineer.v52i1.7328

Schilling, W. (1991). Rainfall data for urban hydrology: what do we need? Atmospheric Research, 27(1–3), 5–21.

Seybert, T. A. (2006). Stormwater management for land development. John Wiley.

Susilowati, S., & Ginting, S. (2021). Analisis frekuensi data hujan durasi pendek di Kota Bekasi. Prosiding Pertemuan Ilmiah Tahunan (PIT) HATHI Ke-38 Surabaya, 30 Oktober 2021, 671–679.

Tholin, A. L., & Keifer, C. J. (1960). Hydrology of urban runoff. Transactions of the American Society of Civil Engineers, 125(1), 1308–1355.

United States Department of Agriculture. (1986). Urban Hydrology for Small Watersheds. In Soil Conservation Service (Issue Technical Release 55 (TR-55)). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Urban+Hydrology+for+Small+watersheds#1

Woodward, D. E., Hawkins, R. H., Jiang, R., Hjelmfelt Allen T, J., Van Mullem, J. A., & Quan, Q. D. (2003). Runoff curve number method: Examination of the initial abstraction ratio. World Water & Environmental Resources Congress 2003, 1–10.

Zakizadeh, F., Nia, A. M., Salajegheh, A., Sañudo-Fontaneda, L. A., & Alamdari, N. (2022). Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability (Switzerland), 14(3). https://doi.org/10.3390/su14031086

Published
2022-11-03
How to Cite
Ginting, S. (2022). PENGEMBANGAN HIDROGRAF LIMPASAN UNTUK WILAYAH PERKOTAAN DI KOTA BEKASI - JAWA BARAT. Jurnal Teknik Sipil, 11(2), 105-118. Retrieved from https://sipil.ejournal.web.id/index.php/jts/article/view/509

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.